Convex feasibility modeling and projection methods for sparse signal recovery
نویسندگان
چکیده
A computationally-efficient method for recovering sparse signals from a series of noisy observations, known as the problem of compressed sensing (CS), is presented. The theory of CS usually leads to a constrained convex minimization problem. In this work, an alternative outlook is proposed. Instead of solving the CS problem as an optimization problem, it is suggested to transform the optimization problem into a convex feasibility problem (CFP), and solve it using feasibility-seeking Sequential and Simultaneous Subgradient Projection methods, which are iterative, fast, robust and convergent schemes for solving CFPs. As opposed to some of the commonly-used CS algorithms, such as Bayesian CS and Gradient Projections for sparse reconstruction, which become inefficient as the problem dimension and sparseness degree increase, the proposed methods exhibit robustness with respect to these parameters. Moreover, it is shown that the CFP-based projection methods are superior to some of the state-of-the-art methods in recovering the signal’s support. Numerical experiments show that the CFP-based projection methods are viable for solving large-scale CS problems with compressible signals.
منابع مشابه
Sparse Image and Video Recovery Using Gradient Projection for Linearly Constrained Convex Optimization
OF THE CAPSTONE PROJECT Sparse Image and Video Recovery Using Gradient Projection for Linearly Constrained Convex Optimization by Daniel Thompson May 2011 University of California, Merced Abstract This project concerns the reconstruction of a signal, which corresponds to either an image or a temporally-varying scene. Signal recovery can be accomplished through finding a sparse solution to an `2...
متن کاملOn Accelerated Hard Thresholding Methods for Sparse Approximation
We propose and analyze acceleration schemes for hard thresholding methods with applications to sparse approximation in linear inverse systems. Our acceleration schemes fuse combinatorial, sparse projection algorithms with convex optimization algebra to provide computationally efficient and robust sparse recovery methods. We compare and contrast the (dis)advantages of the proposed schemes with t...
متن کاملA Non-convex Approach for Sparse Recovery with Convergence Guarantee
In the area of sparse recovery, numerous researches hint that non-convex penalties might induce better sparsity than convex ones, but up until now the non-convex algorithms lack convergence guarantee from the initial solution to the global optimum. This paper aims to provide theoretical guarantee for sparse recovery via non-convex optimization. The concept of weak convexity is incorporated into...
متن کاملEfficient Sparse Recovery via Adaptive Non-Convex Regularizers with Oracle Property
The main shortcoming of sparse recovery with a convex regularizer is that it is a biased estimator and therefore will result in a suboptimal performance in many cases. Recent studies have shown, both theoretically and empirically, that non-convex regularizer is able to overcome the biased estimation problem. Although multiple algorithms have been developed for sparse recovery with non-convex re...
متن کاملSeminorm-Induced Oblique Projections for Sparse Nonlinear Convex Feasibility Problems
Simultaneous subgradient projection algorithms for the convex feasibility problem use subgradient calculations and converge sometimes even in the inconsistent case. We devise an algorithm that uses seminorm-induced oblique projections onto super half-spaces of the convex sets, which is advantageous when the subgradient-Jacobian is a sparse matrix at many iteration points of the algorithm. Using...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Computational Applied Mathematics
دوره 236 شماره
صفحات -
تاریخ انتشار 2012